Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase.

نویسندگان

  • A N Nguyen
  • A Lee
  • W Place
  • K Shiozaki
چکیده

In response to oxidative stress, eukaryotic cells induce transcription of genes required for detoxification of oxidants. Here we present evidence that oxidative stress stimuli are transmitted by a multistep phosphorelay system to the Spc1/Sty1 stress-activated protein kinase in the fission yeast Schizosaccharomyces pombe. The fission yeast mpr1(+) gene encodes a novel protein with a histidine-containing phosphotransfer domain homologous to the budding yeast Ypd1. Spc1 activation upon oxidative stress is severely impaired in the Deltampr1 mutant as well as in the mpr1HQ strain, in which the putative phosphorylation site Mpr1-His221 is substituted with glutamine. In response to oxidative stress, Mpr1 binds to the Mcs4 response regulator that functions upstream of the Spc1 cascade, suggesting that Mcs4 is a cognate response regulator for Mpr1. Unexpectedly, when exposed to hydrogen peroxide, Deltampr1 cells can induce the catalase gene ctt1(+), one of the transcriptional targets of the Spc1 pathway, and survive oxidative stress in the absence of significant Spc1 activation. We have found that Pap1, a bZIP transcription factor homologous to human c-Jun, can mediate induction of ctt1(+) expression upon oxidative stress independently of the Spc1 stress-activated protein kinase. These studies show that oxidative stress stimuli are transmitted by multiple pathways to induce specific gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorelay-dependent and -independent regulation of MAPKKK by the Mcs4 response regulator in fission yeast

In a "two-component system," extracellular stimuli are transmitted by the transfer of a phosphoryl group from a sensor histidine kinase to a response regulator (RR), a mechanism referred to as phosphorelay. In the fission yeast Schizosaccharomyces pombe, peroxide stress signals are transmitted by phosphorelay to the Mcs4 RR, which activates the Spc1 MAP kinase (MAPK) cascade. We previously demo...

متن کامل

Response regulator–mediated MAPKKK heteromer promotes stress signaling to the Spc1 MAPK in fission yeast

The Spc1 mitogen-activated protein kinase (MAPK) cascade in fission yeast is activated by two MAPK kinase kinase (MAPKKK) paralogues, Wis4 and Win1, in response to multiple forms of environmental stress. Previous studies identified Mcs4, a "response regulator" protein that associates with the MAPKKKs and receives peroxide stress signals by phosphorelay from the Mak2/Mak3 sensor histidine kinase...

متن کامل

Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1/Spc1.

The fission yeast Sty1 stress-activated MAP kinase is crucial for the cellular response to a variety of stress conditions. Accordingly, sty1- cells are defective in their response to nutrient limitation, lose viability in stationary phase, and are hypersensitive to osmotic stress, oxidative stress, and UV treatment. Some of these phenotypes are caused by Sty1-dependent regulation of the Atf1 tr...

متن کامل

Evidence for a novel MAPKKK-independent pathway controlling the stress activated Sty1/Spc1 MAP kinase in fission yeast.

The fission yeast Sty1/Spc1 MAP kinase, like the mammalian JNK/SAPK and p38/CSBP1 kinases, is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, heat shock, UV light and the protein synthesis inhibitor anisomycin. Sty1 is activated by a single MAPKK, Wis1. We demonstrate that the conserved MAPKKK phosphorylation sites Ser 469 and Thr 473 in the catalytic ...

متن کامل

Oxidative stress response pathways: Fission yeast as archetype.

Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2000